| 1. | A note on the backward error analysis for eigenvalue problems 关于矩阵特征值问题向后误差分析的注记 |
| 2. | Backward error analysis of a class of the periodic symplectic matrices for eigenproblem 一类周期辛矩阵对特征值问题的向后误差分析 |
| 3. | In addition , the backward error for eigenvalue and eigenvector are analyzed respectively 此外还单独考虑了对特征值和对特征向量的结构向后误差和向后误差。 |
| 4. | The optimal backward error and the condition number are important measures to evaluate the quality of computed solution 最佳向后误差和条件数都是衡量计算解质量的重要指标。 |
| 5. | The expression or evaluation to the optimal structure backward error are given , compared with the result of optimal backward error 在有结构要求时得出了特征对的结构向后误差的表达式或估计式,并与无结构要求下的结果作了比较。 |
| 6. | We get the perturbed system equivalent to the pseudo - symplectic numerical scheme by use of backward error analysis , and prove that this perturbed system is hamiltonian when truncating with less order than pseudo - symplectic order 利用向后误差分析的方法,得出拟辛数值方法所对应的扰动系统,证明了此扰动系统在小于拟辛阶的截断时,是一hamilton系统。 |
| 7. | The backward error and the structured backward error of the approximate solution are the criteria to judge the stability and the strong stability of the numerical algorithm . condition number is a measure of the sensitivity to the approximate solution for the perturbation of original date 近似解的最佳向后误差和最佳结构向后误差的数值分别是判别算法的稳定性和强稳定性的标准,而条件数则是反映数值问题的解对于该问题数据扰动的敏感程度。 |